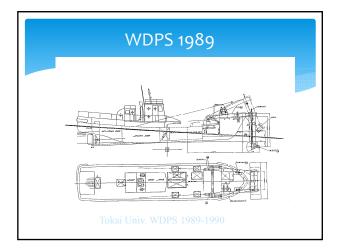
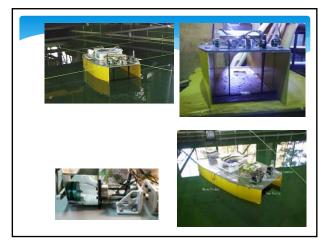

Mermaid II Voyage to the future with waves 2015.08.04 Tokai Univ. Yutaka Terao


* Natural energy utilization * Natural energy utilization * Hull Stabilizer * Thrust generator from waves Move against waves Normal hull: drift by the waves Wave Drifting Force Resistance increase in waves


* Thrust <= Oscillating hydrofoil * Hull motion induces hydrofoils motion * Hydrofoil relative flow generates thrust force * Hull Stabilizer * Stabilized hull reduces the resistance increase in waves

New project of ocean going WDPS

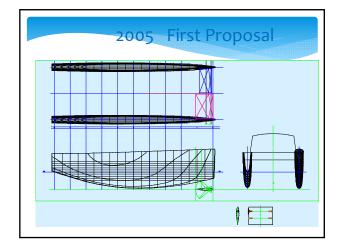
- Sailing by the WDPS
 - * Wave energy only
- * Hawaii to Japan
- * Distance 7000Km
- * Start of the voyage
- * 2008 03 16
- * Solo sailing

Design purpose

- * Stability & Safety
- * Speed
- * Max 6kts
- Reliability of mechanism
 - * Simple control system

Principal requirements

- * Single hand
- * Long container transportation
- * Displacement: 3ton
- * Catamaran hull
- * Yacht based design for JG rule
- * All recycled aluminum


High performance WDPS

- Increase wave energy absorption performance
- * Low resistance in waves

P=TU+E

P: Wave Power; E=0; T:Thrust, U:Forward Speed

Wave energy density is high compared to the wind energy

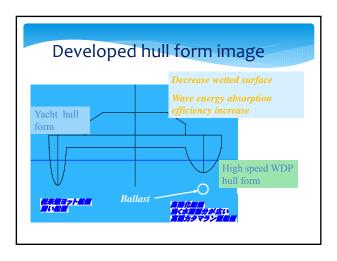
WDPS Hull Form Design

Optimum hull geometry for WDPS

>Wiglay hull series calculation

>Tank test

Feedbacks of wave tank test results


* Hull form change

* Sailing hull form →

WDP hull form

*Hull resistance

*Hull motions

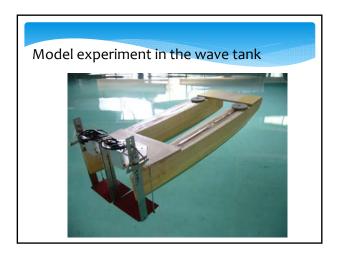
Features of new hull form

* Displacement is same

* Cp Const

* Deep Hull Form→Shallow Hull Form

* WDP performance increase


* Foil position

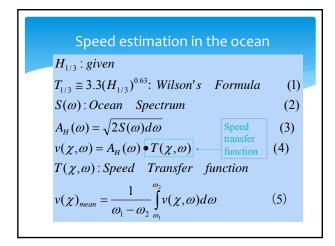
* Easy construction

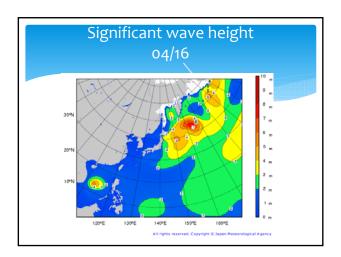
* Ballast equipment

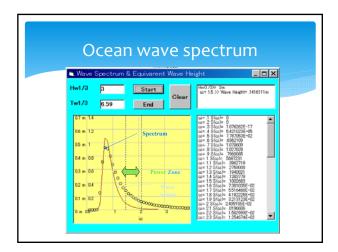
* Longitudinal strength

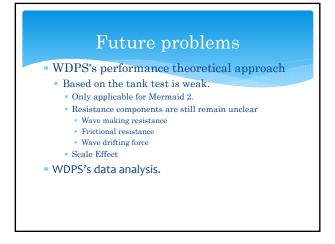
* Course keeping performance

Speed estimation of Mermaid II


- * Assumption:
 - * Hull advanced speed is only dependent on the incident wave period, height and wave heading angle.
 - * Neglect the wind & tidal effects.


Wind & tidal effects are summing up later!


Procedure


Based on the tank test results

- * Make the Polar Diagram like sailing yacht.
- * Wave period, height and wave heading direction.
 - * Many test cases must be done!
- * V is proportional to the incident wave height.
- * Use ocean wave data
 - * Cf. Japan Methodological Agency
 - * $Hw1/3 \rightarrow Tw1/3$ (Using Wilson's formula)
 - * Spectrum form is decided
 - st Equivalent wave height is given
- * Wave heading angle is decided by the course

Thank you for your kind attention

* WDPS actual sea trial(1990)

* Move against waves

* Subsidiary propulsor

* Widen directivity(2000)

* Model experiments

* Beam sea is fastest

* Apply to the Mega-Float(2004)

* Drifting force canceling devices

Drastic change of the earth environment

- * Air pollution
 - * Exhaust Gus
- * Thermal pollution
- * Chemical pollution
- * Bio pollution

Human activity affects the earth environment

Why natural energy?

Shortage of water wat

Natural energy

- *Subterranean heat energy
- *Solar power
- Ocean
- *Wind energy
- energy
- *Ocean thermo energy
- *Wave energy
- *Tidal energy